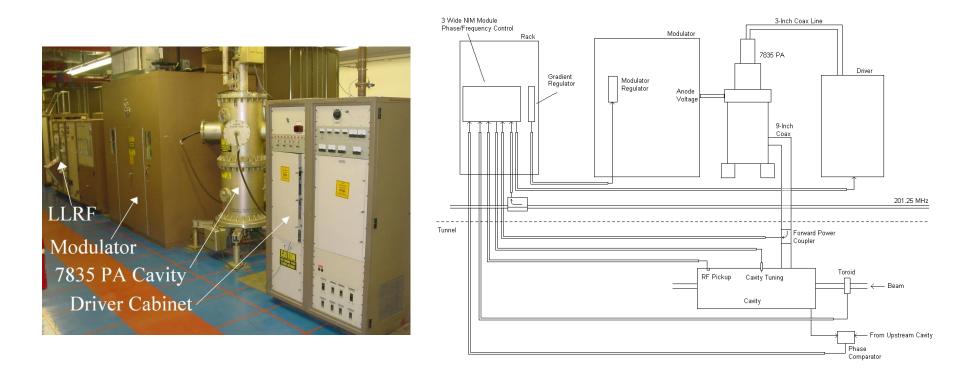
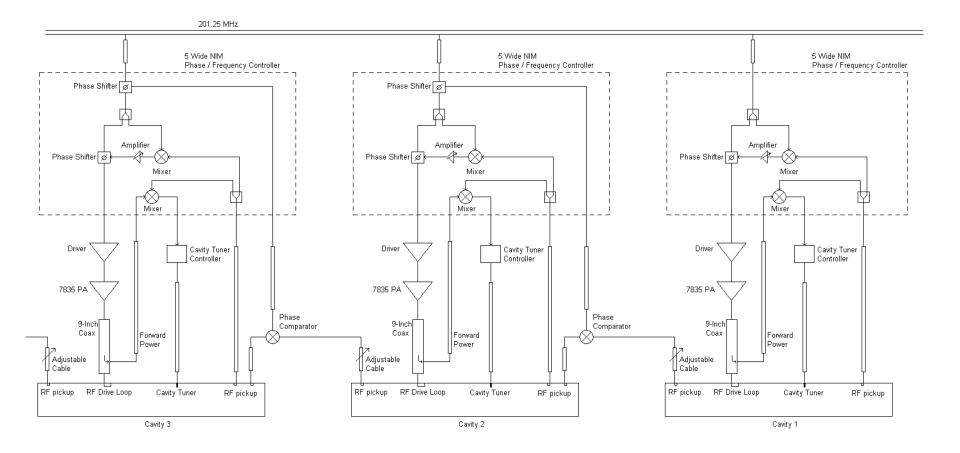


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

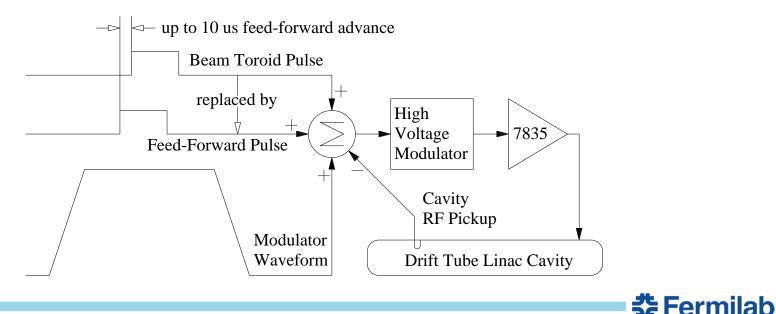
Fermilab Linac 201.25 MHz LLRF


Trevor Butler USPAS 2017 LLRF Class 20 January 2017

35ke	V 750keV	750	(eV	116MeV		400MeV
H-	RFQ t	ouncher	DTL	SCCL -		SCCL
magnetron ion source 35 kV extractor	Radio Frequency Quadrupole 201.24 MHz 1.2 m 1 Tetrode 175 kW	Buncher dual-gap cavity 201.24 MHz 0.2 m 1 pentode 5 kW	Drift Tube Linac 201.25 MHz 75 m 5 tanks 5 Triodes 5 MW 200 EMQ	Transition Side-Coupled Cavity Linac 805 MHz 4 m 2 modules 2 klystrons 200 kW 4 EMQ		Side Coupled Cavity Linac 805 MHz 60 m 7 modules 7 klystrons 12 MW 28 EMQ
	Total Linac: 145 m 5 Triodes 10 klystrons		Duty cycle: 0.5% RF 0.04% beam Beam current: 34 mA (avg. in p		3 different structures (RFQ, DTL, SCCL) 2 frequencies	


Fermilab 201.25 MHz Overview

- 201.25 MHz Drift Tube Linac LLRF
- LLRF system was upgraded from analog phase feedback system
- VXI based LLRF system was been designed to replace the present analog system

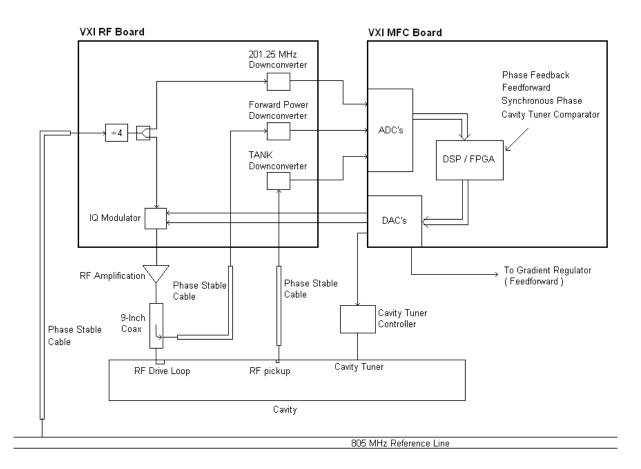

Fermilab

Old 201.25 MHz Linac LLRF System

RF Amplitude Feed-Forward Control

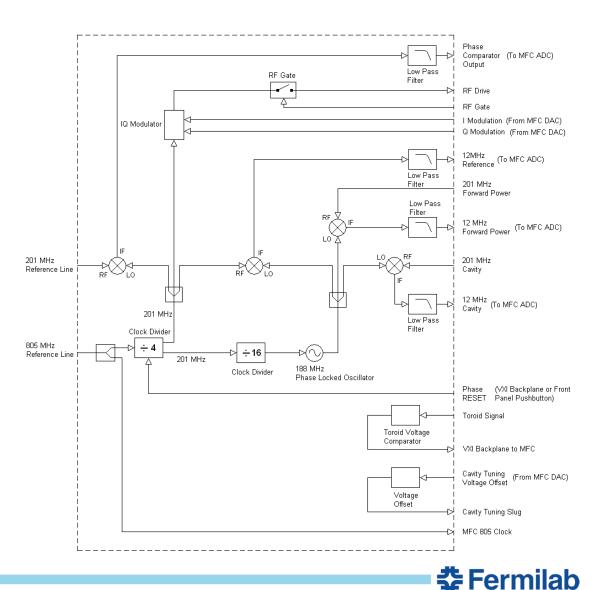
- The 5 MW, Triode tube amplifiers are run near saturation to reduce line to pulse to pulse variations
- Amplitude control cannot be done effectively using direct RF feedback through RF driver.
- Instead, amplitude of the RF is controlled by regulating the modulator voltage applied to the anode of the Burle 7835 power amplifier.
- Old LLRF used Beam Toroid to compensate for beam loading
 - not optimal because of 2 us delay/time constant of present system
- New LLRF System designed to add Feed-Forward Pulse before beam is detected, allowing the system to compensate for the delays in the system.

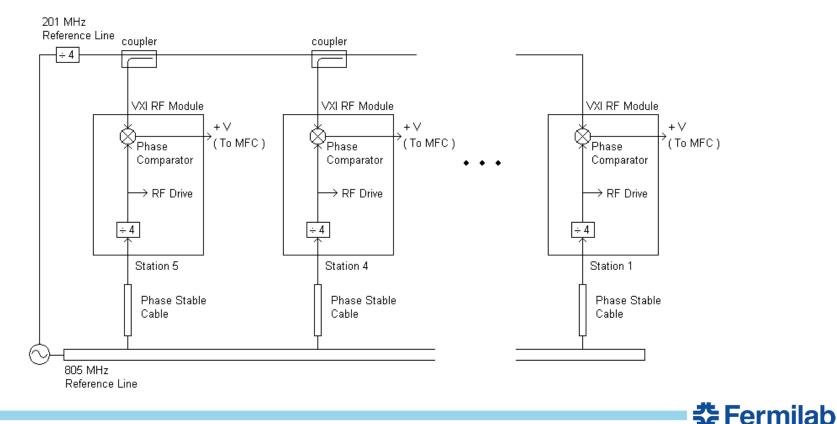
Fermilab 201.25 MHz LLRF Goals and Feature


- Goals
 - Install a new VXI based LLRF system to replace analog system
 - Improve cavity vector regulation and reduce beam losses.
 - Adaptive feedforward system for beam loading compensation
 - Digital Phase feedback system
 - Digital phase comparator for cavity tuning.
 - Phase locked to temperature stabilized 805 MHz reference line
 - Reduce amplitude variations to < 0.2%
 - Reduce the beam setting time to < 2 us.

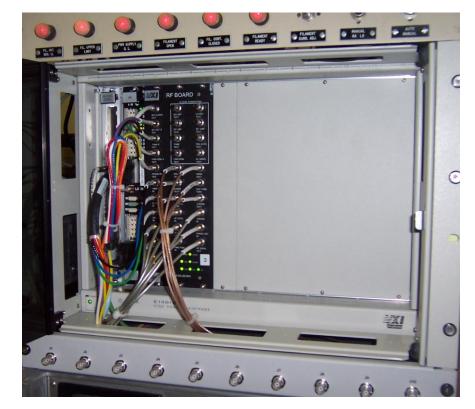
- New LLRF Features
 - Adaptive feed-forward system to improve beam loading compensation
 - Digitally controlled phase feedback system that replaces the present analog RF phase feedback
 - 201.25 MHz RF reference generated from the HE Linac 805 MHz reference line
 - Synchronous phase lock system that replaces the present inter-tank phase regulation system
 - Digital phase comparator to control the position of the cavity resonant frequency tuner

VXI LLRF System


- Slot 0 controller is used to connect the Fermilab controls network (ACNET) with the LLRF system.
- MFC Board uses a modern Digital Signal Processor (DSP) and Field
 Programmable Gate Arrays (FPGA) to implement the phase loop, perform feedforward calculations, and execute other digital control loops.
- Analog RF module is responsible for all of the analog RF signal processing and control. Working together, the new VXI LLRF system provides the following features:


VXI RF Board

- RF module down converts RF signals to an intermediate frequency (IF) of 12.578 MHz for processing by the MFC module.
- The 805 MHz reference line and divides it by 4 to generate the 201.25 MHz at each accelerating cavity.
- This 201.25 MHz signal provides the RF drive for the cavity.
- In-phase/quadrature (IQ) modulator on board allows vector control of the magnitude and phase of the RF drive.
- Preforms other analog tasks
 - RF gating
 - Clock division
 - phase comparison


LLRF Phase Stable Cabling

- Uses the 805 MHz reference line in the new LLRF system is to provide an independent, phase stable RF drive for each accelerating cavity
- This new system allows the phase of each cavity to be adjusted independently.
- LLRF system uses phase matched, phase stabilized 3/8" Heliax cable or equal lengths and following the same rout for each LLRF station.

Conclusion

- This new LLRF design was prototyped and installed at the final LE Linac RF Station.
- After extensive fine tuning on phase and amplitude control parameters, the design goals of the Proton Plan where exceeded, with amplitude variations < 0.2% and beam setting time < 2 us.
- System has been in operation for over 5 years and has worked successfully, reducing losses and keeping the phase stable with respect to the reference line

